ALUMINIUM SECTOR GREENHOUSE GAS PATHWAYS TO 2050

PARAMETERS

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>IAI baseline</td>
</tr>
<tr>
<td>BAU</td>
<td>IAI 2050 Business As Usual scenario</td>
</tr>
<tr>
<td>B2DS</td>
<td>2050 carbon budget aligned with International Energy Agency Beyond 2 Degrees Scenario</td>
</tr>
</tbody>
</table>

Primary aluminium carbon footprint (t CO₂e/t Al)

Aluminium semis supply (million tonnes per annum)

- **Old scrap**: also known as post-consumer scrap. Recycling production from products after use (end-of-life products)
- **New scrap**: recycling production from scrap generated at part-manufacturers
- **Primary**:
GHG emissions (million tonnes CO\textsubscript{2}e per annum)

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU</th>
<th>B2DS</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAU</td>
<td>0.9 Gt CO\textsubscript{2}e</td>
<td>0.65 Gt CO\textsubscript{2}e</td>
<td>-25% (0.25 Gt)</td>
</tr>
<tr>
<td>B2DS</td>
<td>0 Gt CO\textsubscript{2}e</td>
<td>0.25 Gt CO\textsubscript{2}e</td>
<td>-75% (0.75 Gt)</td>
</tr>
</tbody>
</table>

Key
- BAU = Baseline (as of 2018)
- B2DS = Best 2 Degrees Scenario
- CO\textsubscript{2}e = Carbon dioxide equivalent

GREENHOUSE GAS EMISSIONS REDUCTION PATHWAYS

Pathway 1
Electricity decarbonisation potential
- BAU = 0.9 Gt CO\textsubscript{2}e
- B2DS = 0 Gt CO\textsubscript{2}e
- -60%* (-0.9 Gt)†
- -50% (-0.8 Gt)
- -10% (-0.15 Gt)

Pathway 2
Direct emissions potential
- BAU = 0.65 Gt CO\textsubscript{2}e
- B2DS = 0.25 Gt CO\textsubscript{2}e
- -35% (-0.3 Gt)
- -15% (-0.2 Gt)
- -15% (-0.2 Gt)

Pathway 3
Recycling & resource efficiency potential
- BAU = 0.9 Gt CO\textsubscript{2}e avoided
- B2DS = 1.1 Gt CO\textsubscript{2}e avoided
- Near 100% end of life collection and alloy sorting
- Elimination of all metal losses during casting and recycling

2050 demand
Total sector emissions need to be reduced by 80%, while demand for aluminium products grows by over 70%

Electricity
Decarbonisation of electricity offers the largest potential for aluminium sector GHG emissions reduction

Recycling
Improving post-consumer scrap recycling requires action from players all along the aluminium value chain

Process emissions
Novel technologies for heat and steam, and zero carbon smelting are required

* Potential reduction on BAU (1.6 Gt CO\textsubscript{2}e) emissions † Absolute CO
** Includes 0.15 Gt CO\textsubscript{2}e from indirect emission sources (predominantly input materials & transport)